Whitepaper 'FinOps y gestión de costes para Kubernetes'
Considere darle a OptScale un Estrella en GitHub, es 100% de código abierto. Aumentaría su visibilidad ante los demás y aceleraría el desarrollo de productos. ¡Gracias!
Ebook 'De FinOps a estrategias comprobadas de gestión y optimización de costos en la nube'
OptScale FinOps
OptScale - FinOps
Descripción general de FinOps
Optimización de costos:
AWS
MS Azure
Nube de Google
Alibaba Cloud
Kubernetes
MLOps
OptScale - MLOps
Perfiles de ML/IA
Optimización de ML/IA
Perfilado de Big Data
PRECIOS DE ESCALA OPTICA
cloud migration
Acura: migración a la nube
Descripción general
Cambio de plataforma de la base de datos
Migración a:
AWS
MS Azure
Nube de Google
Alibaba Cloud
VMware
OpenStack
KVM
Nube pública
Migración desde:
En la premisa
disaster recovery
Acura: recuperación ante desastres y respaldo en la nube
Descripción general
Migración a:
AWS
MS Azure
Nube de Google
Alibaba Cloud
VMware
OpenStack
KVM

How to calculate unit economics for Kubernetes and traditional workloads

Every company at some point in time starts to calculate and analyze unit economics. It can be done to prepare for a new investment round or to monitor and improve the existing metrics. But if it’s not a big deal for private clouds, it may be tricky for public cloud environments like AWS, MS Azure and GCP, or Kubernetes clusters. In this article I’ll try to explain how to calculate the infrastructure aspect of the unit economics for different types of workloads.

How-to-calculate-unit-economics-for-Kubernetes-traditional-workloads

Please keep in mind that the end formula for each company is different and depends on your business, product and what parameters you prefer to use. For example, you may use only the cost of the production environment but some companies can also add the R&D costs (including infrastructure) to the equation.

Unit economics for private clouds

For private clouds like VMware, Nutanix or bare metal, calculating unit economics is a pretty straightforward task, because a private cloud environment is not as variable or elastic as public clouds, we know how big our TCO is and we can calculate the economics. Here in the majority of the cases we take the TCO and divide it by the number of customers adding extra parameters into the equation, if necessary, like the cost of ads, marketing activities, datacenter lease etc.

Unit economics for public clouds

For public clouds it is a much more complex operation as we need to calculate a cloud cost for applications, we need to deal with cloud billing and use third-party cost management or cloud-native tools like AWS Cost Explorer or Azure Advisor. The best way is to assign a specific tag for all the resources in your application and to track costs based on it. Keep in mind that you need to deal not only with their existing resources but also with the destroyed resources in a selected period of time. If you have a multi-cloud or a hybrid cloud environment, then the task becomes more complex as you need to retrieve data from multiple sources and reiterate the calculations.

Unit economics for Kubernetes environment

Para Kubernetes environments, calculating unit economics is extremely difficult because you can’t map your cloud cost on pods, namespaces, services, and applications in your Kubernetes cluster. You know how much you pay for nodes, you can calculate the cost of the whole cluster using the recommendations above depending on if your cluster runs in a private or a public cloud. But then, you need to figure out how to distribute the cluster expenses between pods, services, and applications. Also, tracking a pod’s creation and destruction is a very complex, as it requires getting historical data and calculating its cost properly. You need to use libraries like Prometheus and Cost Analyzer to get historical data and monitor information, calculate idle resources, and divide the cost of Kubernetes nodes across pods at every moment. You need labels for all their applications, namespaces, and services in your Kubernetes cluster so you can properly group the resources and expenses.

Our product, OptScale, can help with it, as it gives full visibility, optimizes IT costs and engages your engineers in cloud cost-saving, plus provides all the necessary Kubernetes or cloud environment cost details required to get accurate unit economics for Kubernetes and traditional workloads.

Para poner en práctica la teoría, puedes hacer una prueba gratuita, sin necesidad de tarjeta de crédito → https://my.optscale.com/register

Ingresa tu email para recibir contenido nuevo y relevante

¡Gracias por estar con nosotros!

Esperamos que lo encuentre útil.

Puede darse de baja de estas comunicaciones en cualquier momento. política de privacidad

Noticias e informes

FinOps y MLOps

Una descripción completa de OptScale como una plataforma de código abierto FinOps y MLOps para optimizar el rendimiento de la carga de trabajo en la nube y el costo de la infraestructura. Optimización de los costos de la nube, Dimensionamiento correcto de VM, instrumentación PaaS, Buscador de duplicados S3, Uso de RI/SP, detección de anomalías, + herramientas de desarrollo de IA para una utilización óptima de la nube.

FinOps, optimización de costos en la nube y seguridad

Descubra nuestras mejores prácticas: 

  • Cómo liberar direcciones IP elásticas en Amazon EC2
  • Detectar máquinas virtuales de MS Azure detenidas incorrectamente
  • Reduce tu factura de AWS eliminando las copias instantáneas de disco huérfanas y no utilizadas
  • Y conocimientos mucho más profundos

Optimice el uso de RI/SP para equipos de ML/AI con OptScale

Descubra cómo:

  • ver cobertura RI/SP
  • obtenga recomendaciones para el uso óptimo de RI/SP
  • Mejore la utilización de RI/SP por parte de los equipos de ML/AI con OptScale